Synthetic Antibacterials. VIII [1].

7-(1'-Alkylhydrazino)-1,8-naphthyridines and Related Compounds

Sadao Nishigaki [2], Noriko Mizushima [3], Hashime Kanazawa,

Misuzu Ichiba and Keitaro Senga*

Pharmaceutical Institute, School of Medicine, Keio University 35, Shinanomachi, Shinjuku-ku, Tokyo 160, Japan Received December 3, 1984

Synthesis and in vitro antibacterial activity of 7-(1'-alkylhydrazino)-1,8-naphthyridines related to nalidixic acid were investigated. Namely, treatment of 7-alkylamino-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids 1a-d with sodium nitrite in the presence of hydrochloric acid gave the 1-ethyl-1,4-dihydro-7-(N-nitrosoalkylamino)-4-oxo-1,8-naphthyridine-3-carboxylic acids 2a-d, which upon reacting with zinc dust in acetic acid gave the 7-(1'-alkylhydrazino)-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids 3a-d. The compound 3a was alternately obtained by the reaction of 7-chloro-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid (4) with methylhydrazine. The reaction of 7-chloro-4-hydroxy-1,8-naphthyridine-3-carboxylic acid (5) with methylhydrazine gave the 4-hydroxy-7-(1'-methylhydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic acid (6), which upon treatment with alkyl halides afforded the 1-alkyl-1,4-dihydro-7-(1'-methylhydrazino)-4-oxo-1,8-naphthyridines 3a and 3e-g. The reaction of the appropriate 3 with ketones gave the corresponding 7-(1'-methylalkylidenehydrazino)-1,8-naphthyridines 7a-c and 8a-b. Among the compounds prepared, certain 3 and 7 exhibited good activity against Gram-negative bacteria.

J. Heterocyclic Chem., 22, 1029 (1985).

Nalidixic acid (1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8naphthyridine-3-carboxylic acid: NA) has been well known as a clinically useful antibacterial agent against Gram-negative bacteria and has been widely employed for the treatment of urinary-tract infections [4]. It has been presumed that the antibacterial activity of NA is due to the inhibition of bacterial DNA synthesis by forming either cationically charged metal complex (NA-M+) or neutral metal complex (NA-M-NA) in the presence of divalent cations [4]. Although the 4-oxopyridine-3-carboxylic acid moiety of NA retains a pertinent structure for the formation of metal complexes, the methyl group at the 7-position would also play an additional important role for the chelation since the electron releasing methyl group would increase an electron density of an oxygen at the 4-position by attribution of resonance.

Consequently, it was expected that the introduction of a stronger electron releasing group than methyl group at the 7-position might lead to enhancement of the antibacterial activity by increasing an electron density of the oxygen atom. On the basis of this speculation, we now report the synthesis and *in vitro* antibacterial activity of NA derivatives which carry an 1'-alkylhydrazino group and its related functions at the 7-position.

NA-M-NA

As shown in Chart 1, 7-(1'-alkylhydrazino)-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids **3a-d** were synthesized in two steps starting with the readily available 7-alkylamino-1-ethyl-1,8-naphthyridines **1a-d** [5]. Namely, the reaction of **1a-d** [5] with sodium nitrite in the presence of hydrochloric acid resulted in N-nitrosation of the primary amino group to give the corresponding 1-ethyl-7-(N-nitrosoalkylamino)-1,8-naphthyridines **2a-d** in approximately 50% yields. The N-nitrosation was supported by disappearance of the secondary amino absorption band in the ir spectra.

Chart 1

Chart 1

Chart 1

Chart 1

Chart 1

Chart 1

COOH

NaNO2 HCI

H2O

$$R^2$$
-NH2 E1OH

COOH

 R^2 -NH2 E1OH

 R^2 -NH2 E1OH

 R^2 -NH4 E1OH

 R^2 -NH4 R1

 R^2 -NH4 R1

 R^2 -NH4 R1

 R^2 -NH5 R1

 R^2 -NH6 R1

 R^2 -NH7 R1

 R^2 -NH7 R1

 R^2 -NH8 R1

 R^2 -NH9 R2

 R^2 -NH9 R1

 R^2 -NH9 R1

 R^2 -NH9 R2

 R^2 -NH9 R1

 R^2 -NH9 R2

 R^2 -NH9 R2

 R^2 -NH9 R1

 R^2 -NH9 R2

 R^2 -NH9

Table I

1,8-Naphthyridine Derivatives

			n .		Analysis (%) Calcd. (Found)		
Compound No.	Mp (°C)	Yield (%)	Recrystn. Solvent	Formula	C	H	N N
2a	251-252	45	DMF	$C_{12}H_{12}N_4O_4$	52.17	4.38	20.28
24	201-202	70	D.111	0121244	(52.32	4.41	20.46)
$2\mathbf{b}$	242-243	50	DMF	$C_{18}H_{14}N_4O_4$	53.79	4.86	19.30
		••		13 14 4 4	(53.91	4.87	19.20)
2c	223-224	49	DMF	$C_{14}H_{16}N_4O_4$	55.25	5.30	18.41
					(55.14	5.28	18.18)
2d	219-221	47	DMF	$C_{15}H_{18}N_4O_4$	56.59	5.70	17.60
					(56.75	5.79	17.86)
3a	268-271	32 [a]	EtOH	$C_{12}H_{14}N_4O_3$	54.95	5.38	21.37
					(55.12	5.39	21.60)
		76 [b]					
		35 [c]			56.51	5.04	20.28
3b	223-225	32	DMF	$C_{13}H_{16}N_{4}O_{3}$	56.51	5.84	20.28
			T 04	CHNO	(56.78 57.92	5.94 6.25	19.30
3c	200-201	31	EtOAc	$C_{14}H_{18}N_4O_3$	(57.87	6.16	19.25)
	100.000	20	E.O.A.	$C_{15}H_{20}N_4O_3$	59.19	6.62	18.41
3d	199-200	39	EtOAc	C ₁₅ H ₂₀ N ₄ O ₃	(59.23	6.71	18.56)
3 e	> 290	28	EtOH	$C_{11}H_{12}N_{\bullet}O_{3}$	53.22	4.87	22.57
зe	> 290	20	Eton	011111211403	(53.07	4.73	22.60)
3f	232-233	29	EtOH	$C_{13}H_{16}N_4O_3$	56.51	5.84	20.28
JI	202-200	2)	Bion	213-16-14-3	(56.39	5.88	20.05)
3 g	201-203	29	EtOH	$C_{14}H_{18}N_4O_3$	57.92	6.25	19.30
~ B	201 200			14 10 4 3	(57.96	6.25	19.25)
6	> 290	83	EtOH-DMF	$C_{10}H_{10}N_4O_3$	51.28	4.30	23.92
•					(51.16	4.20	23.67)
7a	227-230	79	EtOH	$C_{15}H_{18}N_4O_3$	59.59	6.00	18.53
					(59.48	6.00	18.36)
7b	169-172	22	EtOH-DMF	$C_{16}H_{20}N_4O_3$	60.74	6.37	17.71
					(60.52	6.26	17.76)
7 c	178-180	47	EtOH	$C_{16}H_{20}N_{4}O_{3}$	60.74	6.37	17.71
				0 11 11 0	(60.86	6.42	17.52)
8a	249-251	85	EtOH-DMF	$C_{17}H_{20}N_4O_3$	62.18	6.14 6.27	17.06 17.36)
		.=	E.OH	CHNO	(61.88 63.14	6.48	16.36
8b	191-193	67	EtOH	$C_{18}H_{22}N_4O_3$	(62.94	6.55	16.30
					(02.94	0.55	10.41)

[[]a] The yield in the reduction of 2a. [b] The yield in the reaction of 4 with methylhydrazine. [c] The yield in the ethylation of 6.

Thus obtained **2a-d** were then subjected to reduction in acetic acid using zinc dust to yield the respective **3a-d** in 31-39% yields after basification with 20% sodium hydroxide, and the primary amino absorption bands were observed at around 3300 cm⁻¹ in the ir spectra. Among the compounds prepared, **3a** could directly be obtained in 76% yield by nucleophilic displacement of the 7-chloro-1-ethyl-1,8-naphthyridine (**4**) [5] with methylhydrazine in ethanol, however, the indirect method described above definitely allows the introduction of almost any desired 1'-alkylhydrazino group into the 7-position.

On the other hand, 1-alkyl-1,4-dihydro-7-(1'-methylhydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic acids **3a** and **3e-g** were synthesized by the following sequence. Namely,

nucleophilic displacement of the 7-chloro-4-hydroxy-1,8-naphthyridine (5) [5] with methylhydrazine in ethanol gave the 4-hydroxy-7-(1'-methylhydrazino)-1,8-naphthyridine (6) in 83% yield, and subsequent alkylation with the appropriate alkyl halides in the presence of base gave the desired 3a and 3e-g in 35% and 28-29% yields, respectively.

In order to clarify the effect of N-amino group at the 7-position on the antibacterial activity, we also synthesized some masked hydrazino-1,8-naphthyridine derivatives as shown in Chart 2. Namely, heating of the appropriate 3 with ketones or cyclic ketones yielded the corresponding 7-(1'-methylalkylidenehydrazino)-1,8-naphthyridines 7a-c and 8a-b. The 1,8-naphthyridine derivatives prepared were summarized in Table I.

Screening Results.

A series of 1,8-naphthyridine derivatives prepared was tested for *in vitro* antibacterial activity against a variety of microorganisms and the results were summarized in Table II.

Inspection of the Table revealed that some compounds showed superior activity to NA or piromidic acid (PA) against Gram-negative bacteria, and the most potent activity was found in the compound 3a. A survey of the length of an alkyl group at the 1- and 1'-positions on a series of 3 reveals that the activity is highly dependent on the length of an alkyl group. Namely, the optimal alkyl group was found to be an ethyl for the 1-position and a methyl for the 1'-position. The importance of an alkyl group at the 1- or 1'-position on the activity was suggested that the 4-hydroxy-7-(1'-methylhydrazino)-1,8-naphthyridine (6) and 1-ethyl-7-hydrazino-1,8-naphthyridine (9) [6] did not exhibit any comparable activity to those of 3a-d. In general, 1'-alkyl group showed a greater effect on the activity over that of 1-alkyl group. It is interesting to note that the compounds 2a-d also exhibit some degree of activity even in the presence of an electron attracting nitroso group.

Among the masked hydrazino-1,8-naphthyridines, 7a, 7b, 8a and 8b exhibited marginal or equivalent activity against Gram-negative bacteria to that of NA or PA.

EXPERIMENTAL

Melting points were determined on a Yanaco micro-hot-stage melting point apparatus and are uncorrected. The ir spectra were recorded on a Jasco IR-A spectrophotometer from samples mulled in Nujol.

1-Ethyl-1,4-dihydro-7-(N-nitrosoalkylamino)-4-oxo-1,8-naphthyridine-3-carboxylic Acids 2a-d. General Procedure.

Table II

In Vitro Antibacterial Activity of 1,8-Naphthyridine Derivatives

	MIC, $\mu g/ml$ [a]						
	Staphylococcus	Escherichia	Proteus	Pseudomonas	Klebsiella		
Compound	aureus	coli	vulgaris	aeruginosa	pneumoniae		
No.	209P-JC	NIHJ-JC	HX-19	347	ST-101		
2a	12.5	1.56	0.78	>100	12.5		
2b	12.5	6.25	0.78	>100	50		
2c	50	50	12.5	>100	>100		
2d	100	>100	50	>100	>100		
3a	12.5	0.78	0.78	50	6.25		
3 b	25	3.13	0.78	100	25		
3c	>100	25	0.56	>100	100		
3 d	>100	100	6.25	>100	>100		
3 e	50	50	25	>100	>100		
3f	50	3.13	0.78	50	25		
3g	100	25	1.56	>100	100		
6	>100	>100	100	>100	>100		
7a	12.5	3.13	0.78	100	12.5		
7b	12.5	6.25	1.56	100	25		
7e	25	12.5	0.78	100	12.5		
8a	25	12.5	1.56	50	25		
8b	100	25	3.13	100	25		
9	>100	>100	25	>100	>100		
NA [b]	>100	6.25	3.13	>100	6.25		
PA [c]	25	6.25	3.13	>100	25		
PPA [d]	>100	1.56	3.13	6.25	6.25		
OA [e]	3.13	6.25	3.13	6.25	6.25		

[a] Minimum inhibitory concentration (MIC) is the lowest concentration of the compound that prevents visible growth after 48 hours of incubation at 37°. [b] NA: naldixic acid. [c] PA: piromidic acid. [d] PPA: pipemidic acid. [e] OA: oxolinic acid.

To a suspension of 7-alkylamino-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, **1a-d** [5] (0.002 mole) in water (2 ml) containing concentrated hydrochloric acid (0.3 g), sodium nitrite (1.4 g, 0.02 mole) was added dropwise at 0-5° with stirring. After stirring for 1 hour at the same temperature, the precipitates were filtered off and recrystallized to give the corresponding **2a-d**.

7-(1'-Alkylhydrazino)-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic Acids **3a-d**. General Procedure.

To a suspension of the appropriate 2a-d (0.0002 mole) in acetic acid (3 ml), a suspension of zinc dust (0.195 g, 0.003 g-atom) in water (5 ml) was added dropwise at 0-5° with stirring. After stirring until the mixture reached the ambient temperature, the mixture was heated at 80° for few minutes. The insoluble material was filtered off, and the filtrate was adjusted to pH 6-7 by adding 20% sodium hydroxide. The precipitated material was filtered off, washed with water, dried, and recrystallized to give the corresponding 3a-d.

1-Ethyl-1,4-dihydro-7-(1'-methylhydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic Acid (3a).

A mixture of 7-chloro-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, (4) [5] (0.253 g, 0.001 mole) and methylhydrazine (0.092 g, 0.002 mole) in ethanol (5 ml) was refluxed for 2 hours. After cooling to the ambient temperature, the precipitates were filtered off and recrystallized to give 3a (0.2 g, 76%), which was identical to the sample obtained by the reduction of 2a.

4-Hydroxy-7-(1'-methylhydrazino)-1,8-naphthyridine-3-carboxylic Acid (6).

A mixture of 7-chloro-4-hydroxy-1,8-naphthyridine-3-carboxylic acid (5) [5] (0.9 g, 0.004 mole) and methylhydrazine (0.46 g, 0.01 mole) in ethanol (30 ml) was refluxed for 2 hours. After cooling to the ambient temperature, the precipitates were filtered off and recrystallized to give 6 (0.4 g, 83%).

1-Alkyl-1,4-dihydro-7-(1'-methylhydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic Acids **3a** and **3e-g**. General Procedure.

A mixture of 6 (1.4 g, 0.006 mole), 10% potassium hydroxide (5 ml), water (20 ml), and ethanol (30 ml) containing the appropriate alkyl halide

(0.024 mole) was refluxed for 2 hours. After cooling to the ambient temperature, the precipitates were filtered off and recrystallized to give the corresponding 3a and 3e-g.

1-Ethyl-1,4-dihydro-7-(1'-methylalkylidenehydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic Acids 7a-c. General Procedure.

A suspension of the appropriate 3 (0.0005 mole) in ketones (5 ml) was refluxed for 3 to 5 hours. After cooling to the ambient temperature, the precipitates were filtered off and recrystallized to give the corresponding 7a-c.

1-Ethyl-1,4-dihydro-7-(1'-methylcycloalkylidenehydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic Acids 8a-b. General Procedure.

A suspension of 3a (0.131 g, 0.0005 mole) in the appropriate cyclic ketones (5 ml) was refluxed for 1 hour. The reaction mixture was evaporated in vacuo and the residue was recrystallized to give the corresponding 8a-b.

Acknowledgement.

We express our thanks to the Ueno Fine Chemical Industries, Ltd. for elemental analyses and *in vitro* antibacterial activity as well as their kind offer of the screening data on the compound 9.

REFERENCES AND NOTES

- [1] Part VII: S. Nishigaki, N. Mizushima and K. Senga, Chem. Pharm. Bull., 25, 349 (1977).
- [2] Present address: Research Institute, Fujimoto Pharmaceutical Co., Ltd., 1-3-40 Nishiotsuka, Matsubara-shi, Osaka 580, Japan.
- [3] Present address: Department of Pharmacy, Tokai University Hospital, 143, Azakaminodai, Shimokasuya, Isehara-shi, Kanagawa 259-11, Japan.
- [4] G. C. Crumplin, J. M. Midgley and J. T. Smith, "Topics in Antibiotic Chemistry", Vol 4, P. G. Sammes, ed, John Wiley and Sons, New York, 1980, pp 1-38 and references cited therein.
- [5] G. Y. Lesher, U. S. Patent 3,590,036 (1971); Chem. Abstr., 58, 7953 (1963).
- [6] This compound has been claimed in the patent [5] and the minimum inhibitory concentration data were kindly provided from the Ueno Fine Chemical Industries, Ltd.